Getting Started
Introduction
The python-constraint module offers efficient solvers for Constraint Satisfaction Problems (CSPs) over finite domains in an accessible Python package. CSP is class of problems which may be represented in terms of variables (a, b, …), domains (a in [1, 2, 3], …), and constraints (a < b, …).
Examples
Basics
This interactive Python session demonstrates basic operations:
>>> from constraint import *
>>> problem = Problem()
>>> problem.addVariable("a", [1,2,3])
>>> problem.addVariable("b", [4,5,6])
>>> problem.getSolutions()
[{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4},
{'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4},
{'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}]
>>> problem.addConstraint(lambda a, b: a*2 == b,
("a", "b"))
>>> problem.getSolutions()
[{'a': 3, 'b': 6}, {'a': 2, 'b': 4}]
>>> problem = Problem()
>>> problem.addVariables(["a", "b"], [1, 2, 3])
>>> problem.addConstraint(AllDifferentConstraint())
>>> problem.getSolutions()
[{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3},
{'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}]
Rooks problem
The following example solves the classical Eight Rooks problem:
>>> problem = Problem()
>>> numpieces = 8
>>> cols = range(numpieces)
>>> rows = range(numpieces)
>>> problem.addVariables(cols, rows)
>>> for col1 in cols:
... for col2 in cols:
... if col1 < col2:
... problem.addConstraint(lambda row1, row2: row1 != row2,
... (col1, col2))
>>> solutions = problem.getSolutions()
>>> solutions
>>> solutions
[{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0},
{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 0, 7: 1},
{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 0},
{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 0, 7: 2},
...
{0: 7, 1: 5, 2: 3, 3: 6, 4: 2, 5: 1, 6: 4, 7: 0},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 0, 7: 4},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 4, 7: 0},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 2, 7: 0},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 0, 7: 2},
...]
Magic squares
This example solves a 4x4 magic square:
>>> problem = Problem()
>>> problem.addVariables(range(0, 16), range(1, 16 + 1))
>>> problem.addConstraint(AllDifferentConstraint(), range(0, 16))
>>> problem.addConstraint(ExactSumConstraint(34), [0, 5, 10, 15])
>>> problem.addConstraint(ExactSumConstraint(34), [3, 6, 9, 12])
>>> for row in range(4):
... problem.addConstraint(ExactSumConstraint(34),
[row * 4 + i for i in range(4)])
>>> for col in range(4):
... problem.addConstraint(ExactSumConstraint(34),
[col + 4 * i for i in range(4)])
>>> solutions = problem.getSolutions()
Features
The following solvers are available:
Backtracking solver
Optimized backtracking solver
Recursive backtracking solver
Minimum conflicts solver
Predefined constraint types currently available:
Download and install
$ pip install python-constraint2