Getting Started ================= Introduction ------------ The `python-constraint` module offers efficient solvers for `Constraint Satisfaction Problems (CSPs) `_ over finite domains in an accessible Python package. CSP is class of problems which may be represented in terms of variables (a, b, ...), domains (a in [1, 2, 3], ...), and constraints (a < b, ...). Examples -------- Basics ~~~~~~ This interactive Python session demonstrates basic operations: .. code-block:: python >>> from constraint import * >>> problem = Problem() >>> problem.addVariable("a", [1,2,3]) >>> problem.addVariable("b", [4,5,6]) >>> problem.getSolutions() [{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4}, {'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4}, {'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}] >>> problem.addConstraint(lambda a, b: a*2 == b, ("a", "b")) >>> problem.getSolutions() [{'a': 3, 'b': 6}, {'a': 2, 'b': 4}] >>> problem = Problem() >>> problem.addVariables(["a", "b"], [1, 2, 3]) >>> problem.addConstraint(AllDifferentConstraint()) >>> problem.getSolutions() [{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3}, {'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}] Rooks problem ~~~~~~~~~~~~~ The following example solves the classical Eight Rooks problem: .. code-block:: python >>> problem = Problem() >>> numpieces = 8 >>> cols = range(numpieces) >>> rows = range(numpieces) >>> problem.addVariables(cols, rows) >>> for col1 in cols: ... for col2 in cols: ... if col1 < col2: ... problem.addConstraint(lambda row1, row2: row1 != row2, ... (col1, col2)) >>> solutions = problem.getSolutions() >>> solutions >>> solutions [{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0}, {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 0, 7: 1}, {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 0}, {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 0, 7: 2}, ... {0: 7, 1: 5, 2: 3, 3: 6, 4: 2, 5: 1, 6: 4, 7: 0}, {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 0, 7: 4}, {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 4, 7: 0}, {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 2, 7: 0}, {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 0, 7: 2}, ...] Magic squares ~~~~~~~~~~~~~ This example solves a 4x4 magic square: .. code-block:: python >>> problem = Problem() >>> problem.addVariables(range(0, 16), range(1, 16 + 1)) >>> problem.addConstraint(AllDifferentConstraint(), range(0, 16)) >>> problem.addConstraint(ExactSumConstraint(34), [0, 5, 10, 15]) >>> problem.addConstraint(ExactSumConstraint(34), [3, 6, 9, 12]) >>> for row in range(4): ... problem.addConstraint(ExactSumConstraint(34), [row * 4 + i for i in range(4)]) >>> for col in range(4): ... problem.addConstraint(ExactSumConstraint(34), [col + 4 * i for i in range(4)]) >>> solutions = problem.getSolutions() Features -------- The following solvers are available: - Backtracking solver - Optimized backtracking solver - Recursive backtracking solver - Minimum conflicts solver .. role:: python(code) :language: python Predefined constraint types currently available: - :any:`FunctionConstraint` - :any:`AllDifferentConstraint` - :any:`AllEqualConstraint` - :any:`MaxSumConstraint` - :any:`ExactSumConstraint` - :any:`MinSumConstraint` - :any:`MaxProdConstraint` - :any:`MinProdConstraint` - :any:`InSetConstraint` - :any:`NotInSetConstraint` - :any:`SomeInSetConstraint` - :any:`SomeNotInSetConstraint` Download and install -------------------- .. code-block:: shell $ pip install python-constraint2